
RESEARCH ARTICLE SUMMARY
◥

IMMUNOLOGY

An interactive reference framework
for modeling a dynamic immune system
Matthew H. Spitzer,*† Pier Federico Gherardini,* Gabriela K. Fragiadakis,
Nupur Bhattacharya, Robert T. Yuan, Andrew N. Hotson, Rachel Finck,
Yaron Carmi, Eli R. Zunder, Wendy J. Fantl, Sean C. Bendall,
Edgar G. Engleman,‡ Garry P. Nolan†‡

INTRODUCTION: Immune cells constitute an
interacting hierarchy that coordinates its ac-
tivities according to genetic and environmen-
tal contexts. This systemically mobile network
of cells results in emergent properties that
are derived from dynamic cellular interactions.
Unlike many solid tissues, where cells of given
functions are localized into substructures that
can be readily defined, the distribution of pheno-
typically similar immune cells into various
organs complicates discerning any modest dif-
ferences between them. Over decades of inves-
tigation into immune functions during health
and disease, research has necessarily focused
on understanding the individual cell types
within the immune system, and, more recently,
toward identifying interacting cells and the
messengers they use to communicate.

RATIONALE: Methods of single-cell analysis,
such as flow cytometry, have led the effort
to enumerate and quantitatively character-
ize immune cell populations. As research has
accelerated, our understanding of immune

organization has surpassed the technical lim-
itations of fluorescence-based flow cytometry.
With the advent of mass cytometry, which en-
ables measuring significantly more features
of individual cells, most known immune cell
types can now be identified from within a
single experiment. Leveraging this capabil-
ity, we set out to initiate an immune system
reference framework to provide a working
definition of immune organization and enable
the integration of new data sets.

RESULTS: To build a reference framework
from mass cytometry data, we developed a
novel algorithm to transform the single-cell
data into intuitive maps. These Scaffold maps
provide a data-driven interpretation of immune
organization while also integrating conven-
tional immune cell populations as landmarks
to orient the user. By applying Scaffold maps
to data from the bone marrow of wild-type
C57BL/6mice, the method reconstructed the
organization within this complex developmen-
tal organ. Using this sample as a reference

point, the unique organization of immune cells
within various organs across the body was
revealed. The maps recapitulated canonical
cellular phenotypes while revealing repro-
ducible, tissue-specific deviations. The approach
revealed influences of genetic variation and
circadian rhythms on immune structure, per-
mitted direct comparisons of murine and
human blood cell phenotypes, and even en-
abled archival fluorescence-based flow cy-
tometry data to bemapped onto the reference
framework.

CONCLUSION: This foundational reference
map provides a working definition of systemic
immune organization to which new data can
be integrated to reveal deviations driven by ge-

netics, environment, or pa-
thology. Beyond providing
an analytical framework
tounderstand immuneor-
ganization from the uni-
fied data set generated here,
the approacheswedescribe

can serve as a data repository for collating
experimental data from the research commu-
nity, including gene expression andmutational
analysis. Efforts that characterize cellular be-
havior in this open-source approach will con-
tinue to improve upon the initiating reference
presented here to reveal the inherent structure
in biological networks of immunity for clinical
benefit.▪
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Building a dynamic immune system reference framework. By combining
mass cytometry with the Scaffold maps algorithm, the cellular organization of
any complex sample can be transformed into an intuitive and interactive map
for further analysis. By first choosing one foundational sample as a reference (i.e.,
the bone marrow of wild-type mice), the effects of any perturbation can be readily
identified in this framework.
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Immune cells function in an interacting hierarchy that coordinates the activities of various
cell types according to genetic and environmental contexts. We developed graphical
approaches to construct an extensible immune reference map from mass cytometry data
of cells from different organs, incorporating landmark cell populations as flags on the
map to compare cells from distinct samples. The maps recapitulated canonical cellular
phenotypes and revealed reproducible, tissue-specific deviations. The approach revealed
influences of genetic variation and circadian rhythms on immune system structure,
enabled direct comparisons of murine and human blood cell phenotypes, and even enabled
archival fluorescence-based flow cytometry data to be mapped onto the reference
framework. This foundational reference map provides a working definition of systemic
immune organization to which new data can be integrated to reveal deviations driven by
genetics, environment, or pathology.

T
he immune system is a systemically mobile
network of cells with emergent proper-
ties derived from dynamic cellular inter-
actions. Unlike many solid tissues, where
cells of given functions are localized into

substructures that can be readily defined, the
distribution of phenotypically similar immune
cells into various organs makes it difficult to
discern differences between them. Much re-
search has necessarily focused on understand-
ing the individual cell types within the immune
system, and, more recently, toward identifying
interacting cells and the messengers they use to
communicate. Methods of single-cell analysis,
such as flow cytometry, have been at the heart
of this effort to enumerate and quantitatively
characterize immune cell populations (1–3). As
research has accelerated, the number of markers
required to identify cell types and explain de-
tailed mechanisms has surpassed the technical
limitations of fluorescence-based flow cytometry
(1–4). Consequently, insights have often been
limited because only a few cell subsets could be
examined, independent of the immune system
as a whole (5, 6).
Although individual immune cell populations

have been examined extensively, no comprehen-
sive or standardized reference map of the im-

mune system has been developed, primarily
because of the difficulty of data normalization
and lack of coexpression measurements that
would enable “merging” of results. In other anal-
ysis modalities, such as transcript profiling of
cell populations, reference standards and min-
able databases have shown extraordinary utility
(7–14). A comprehensive reference map defin-
ing the organization of the immune system at
the single-cell level would similarly offer new
opportunities for organized data analysis. For
example, macrophages exhibit tissue-specific
phenotypes (15), and adaptive immune responses
are influenced by genetics (16), but discerning
these properties of immune organization re-
quired integrating the results of many disparate
studies. Even current analytical tools that do
provide a systems-level view do not compare
new samples to an existing reference framework,
making them unsuitable for this objective (17, 18).
In contrast, a reference map that is extensible
could provide a biomedical foundation for a sys-
tematized, dynamic, community-collated resource
to guide future analyses and mechanistic studies.
We leveraged mass cytometry, a platform that

allows measurement of multiple parameters
simultaneously at the single-cell level, to initiate
a reference map of the immune system (19–21).
By combining the throughput of flow cytometry
with the resolution of mass spectrometry, this
hybrid technology enables the simultaneous quan-
tification of 40 parameters in single cells. The
use of mass cytometry allows fluorophore re-
porters to be replaced with isotopically pure,
stable heavy metal ions conjugated to antibodies
or affinity reagents (22). These reporter ions are
then quantified by time-of-flight mass spec-

trometry to provide single-cell measurements,
enabling a more detailed characterization of com-
plex cellular systems for a robust reference map.

An analytical framework for a
reference map

A useful reference map should enable a data-
driven organization of cells and should be flex-
ible enough to accommodate different types of
measurements. This would result in a map that
has underlying consistency but is also robust
enough to allow overlay of new data (or even of
archival data from different measurement mod-
alities) according to cell similarities. The approach
is meant to provide templates for representing
the system as a whole to enable systems-level
comparisons, similar to other efforts to compare
biological networks (23–28). Although we provide
one template here, the framework is built to enable
users to construct individualized or community-
organized versions.
Building a reference map requires the ability

to overlay data from multiple samples onto one
or more foundational reference samples; this
ability is not accommodated by algorithms such
as SPADE and viSNE, which necessitate incorpo-
rating data from all samples at the onset (17, 18).
Without this feature, the reference map would
not be an extensible solution. Moreover, the ref-
erence map ought to incorporate information
about millions of individual cells to comprehen-
sively represent the numerous cell types within
complex samples, which remains beyond the ca-
pacity of other approaches (18). The mapping
procedure should also enable users to implement
one of the many available clustering algorithms
or their own subjective definitions to determine
cell groupings (29). Perhaps most important, po-
sitions of landmark cell populations are marked
as flags on the map to allow users to compare cells
in new samples to cells described in the existing
literature (30).
Force-directed graphs are a type of graphical

model commonly used to spatially organize com-
plex data in an intuitive and flexible manner
(31). Force-directed graphs also enable a method
for grouping cells with similar features in a
space that is defined by the molecular features
of the individual cells (32). Force-directed ap-
proaches are based on a set of “forces” that
guide data organization into, usually, a two-
dimensional (2D) plane (33, 34). Nodes (in this
case, groups of cells) that are similar are con-
nected by edges with a length proportional to
their resemblance (in our implementation, cosine
similarity). These nodes are then spatialized
into a graph: All nodes repel one another as if
they were the same poles of magnets, but edges
pull similar nodes together, acting like springs.
We adapted this concept to build a new method
to visualize complex cellular samples, termed
Scaffold (single-cell analysis by fixed force- and
landmark-directed) maps.
Scaffold maps enable a model to be built that

incorporates prior knowledge from the litera-
ture but also allows the discovery and analysis
of unanticipated cell types or behavioral states.
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Such an extensible map can allow for new data
sets to be incorporated and linked to their mech-
anistic conclusions with references—as do tran-
scriptomics or genomics databases (7, 11, 13, 14).

Systematic analysis for an immune
reference map

We initiated a prototype high-resolution refer-
ence map of the murine immune system by
characterizing the expression of 39 cell surface
proteins and transcription factors (selected to
delineate immune cell types) on more than 3 ×
107 single cells from 10 different anatomical lo-
cations (fig. S1A, table S1, and Materials and
Methods). Single-cell suspensions from the bone
marrow, blood, spleen, skin-draining (inguinal)
lymph node (SLN), mesenteric lymph node (MLN),
thymus, lungs, liver, small intestine, and colon of
12-week-old male C57BL/6, Balb/c, and 129S1/Sv
mice were simultaneously processed in repli-
cate. Measurements were done under conditions
that limited measuring error (35, 36), and all
antibodies were validated to bind target proteins
by standard protocols. As such, one antibody
cocktail was used for all samples, and cells
were bar-coded and pooled by tissue before cell
staining to minimize technical variability (Ma-
terials and Methods). Single-cell protein ex-
pression was quantified using a CyTOF mass
cytometer (Fluidigm Corp., South San Francisco,
CA). The data for these samples were normalized
to account for variability in instrument sensitivity
over time (36). Cells from each condition were
subsequently identified by their bar code and writ-
ten into a unique flow cytometry standard file for
each sample (see acknowledgments for data dis-
tribution instructions).

Defining immune organization
in the bone marrow

Because the bone marrow contains most devel-
oping and mature immune cell types, we used
the cells therein to build a foundational map as
a point of comparison (Fig. 1A). “Landmark” pop-
ulations of immune cells commonly recognized
in the literature were identified in the bone mar-
row data of all C57BL/6 replicates by conventional
criteria (Fig. 1A and fig. S1B). These populations
ranged from hematopoietic stem cells to termi-
nally differentiated lymphocytes and myeloid
cells and served as landmarks within the map
(visualized by red nodes) to demarcate the loca-
tion of cell populations of interest (Fig. 1A).
We also took a data-driven approach to group

similar cells into “clusters” according to their ex-
pression of the measured proteins. Grouping
similar cells by clustering allows all of the data
to be visualized at once. We therefore performed
an unsupervised clustering of the C57BL/6 bone
marrow leukocytes from all biological repli-
cates with a modified PAM (partitioning around
medioids) algorithm adapted for larger data
sets (Fig. 1A and Materials and Methods) (37).
We chose a number of clusters (200) that we ex-
pect exceeds the number of “true” cell popula-
tions present in the data. Therefore, we do not
expect each cluster to represent a recognized

functional cell subset, but rather to overparti-
tion the data to ensure that two populations of
distinct natures are not merged through under-
clustering. We believe this to be an appropriate
tradeoff, as the proximity of clusters immedi-
ately reveals groups of highly similar cells and
thereby provides clarity during visualization.
This enables an intuitive browsing of the data
rather than relying on clustering to define the
“true” number of cell populations, which depends
on evolving semantic conventions and under-
standings of cellular functions. Manual analysis
of cell populations by traditional criteria, which
we visualized by landmark nodes, remains the
standard against which automated clustering
algorithms are routinely compared (29).
The reference map was built by combining

these unsupervised cell clusters (blue nodes) with
the manually identified cell populations (red
nodes) (Fig. 1A). Cluster sizes were scaled to
reflect the relative cell frequencies in these ini-
tial maps, although this option can be modified.
A force-directed algorithm was applied to the
data, attracting cell clusters with similar pheno-
types while separating those with dissimilar
phenotypes (Fig. 1A). When mapping C57BL/6
bone marrow cells (Fig. 1B), the landmark and
unsupervised nodes were arranged (with no man-
ual intervention or organization) into a structure
that recapitulated most known developmental
relations between these populations (Fig. 1C)
(17, 20). For instance, the hematopoietic stem cell
(HSC) landmark was situated at the top of the
map and linked to progenitors and more mature
populations below. Different granulocytes (in-
cluding neutrophils, eosinophils, basophils, and
mast cells) occupied nearby portions of the map.
Macrophages and conventional dendritic cells
(cDCs) fell adjacent, and the various T cell pop-
ulations [CD4+, CD8+, NKT (natural killer T),
and gd] grouped together.
Because clusters serve as a means of partition-

ing the data in this map, the density of clusters
also reflected the relative frequencies of immune
cells in the bone marrow that correspond to
cell types as defined by established criteria
(Fig. 1B, inset). For instance, the map exhibited
the densest concentration of unsupervised clusters
(blue nodes) surrounding the neutrophil, mono-
cyte, and B cell landmarks. Rarer populations,
such as dendritic cells, eosinophils, and basophils,
were more sparsely represented. The progenitor
zone contained cell clusters proximal to every
multipotent population identified by established
criteria with cell clusters also falling in between
them, revealing the transition states between clas-
sically defined progenitors. This graph represents
the data from all C57BL/6 biological replicates
combined, although the data from individual mice
consistently demonstrated these trends (fig. S2).
The Scaffold map of the bone marrow thus

reflected the expected biological relations be-
tween immune cell populations and enabled an
unsupervised visualization of its composition
and complexity. The profiles of cells in any clus-
ter, or any group of clusters, can also be visual-
ized by conventional histograms. We used this

as the initiating reference template and mapped
other organs onto this map for comparison.

Mapping immune organization
across the body

After determining that Scaffold maps effec-
tively convey the organization of the immune
cells present in the bone marrow, we deter-
mined how immune cells from other lymphoid
organs or the blood might map into this space.
By fixing the identity and position of the land-
mark (red) nodes that represent canonical pop-
ulations in the bone marrow, we retained a
common reference across all samples (Fig. 1A).
We performed unsupervised clustering of total
leukocytes from each tissue independently, and
then overlaid these cell clusters (blue nodes)
onto the reference map by allowing them to
find their location according to the attractive
and repulsive forces described above (Fig. 1A
and Fig. 2).
By inspecting the composition of the periph-

eral blood on the map, it was apparent that the
cell populations overlapped with those found in
the bone marrow, as was evident by the prox-
imity of unsupervised clusters to the landmarks
(Fig. 2A). As expected, the blood did not contain
cells localized to the HSC/progenitor portion
of the map. Rather, cell clusters associated with
landmark nodes of mature cell populations
known to predominate in circulating blood at
steady state, including granulocytes, monocytes,
B cells, T cells, and NKT cells (figs. S3 and S4
and table S2). Because unsupervised cell clusters
from the blood were positioned close to land-
mark populations, there were no substantial un-
anticipated populations present in the circulation.
In comparison, maps for the secondary lymph-

oid organs (spleen, SLN, MLN) all exhibited an
immune landscape dominated by mature lymph-
oid cells of the T and B cell lineages (Fig. 2, B
to D). Indeed, these populations were also com-
parable when viewed by conventional 2D dot
plots (Fig. 2, B and C, inset). Many of the mye-
loid cells in these tissues mapped more closely
to the macrophage and dendritic cell zones
and expressed major histocompatibility complex
(MHC) class II, used to present antigens, con-
sistent with the presence of mature antigen-
presenting cells (APCs) in these organs (Fig. 2,
B to D) (38). The clusters from the secondary
lymphoid organs also largely mapped near a
landmark population, indicating that most cells
found in these tissues belong to well-characterized
populations. The subtle differences in the cellu-
lar organization of these organs become evident
thorough investigation of their maps, revealing
enrichment in NKT cells, monocytes, macrophages,
and cDCs in the spleen relative to frequencies of
those cells in lymph nodes [P < 0.0001 for each
by analysis of variance (ANOVA)]. A higher fre-
quency of macrophages (P = 0.0006 by two-sided
t test) and lower frequency of cDCs (P = 0.013 by
two-sided t test) were present in the SLN than
in the MLN. An appreciation for the distinct cel-
lular composition of different secondary lymph-
oid organs provides an opportunity to examine
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Fig. 1. Scaffold maps reveal immune organization of the bone marrow.
(A) Schematic of the Scaffold map algorithm. (i) Bone marrow from C57BL/6
mice was chosen as the reference sample. (ii) Leukocytes were grouped ac-
cording to prior knowledge to define landmark cell populations as reference
points on the map. The same leukocytes were subjected to unsupervised
clustering to provide an objective view of the tissue composition and orga-
nization. An illustration is provided with the two major lineages of mature Tcells,
which express either CD4 or CD8. (iii, iv) Both landmark populations (red nodes)
and unsupervised clusters (blue nodes) were used to generate a force-directed
graph in which similar nodes are located close together according to the sim-
ilarity of their protein expression. Thus, similar nodes fall in proximity to one
another while disparate nodes segregate apart from one another. Size of

unsupervised clusters denotes the relative number of cells in that grouping.
(v) Landmark populations from the bone marrow were fixed in place for sub-
sequent maps to provide points of reference for rapid human interpretation.
(vi) Additional samples were each subjected to unsupervised clustering via the
same clustering algorithm. (vii) The resulting clusters for each sample were
overlaid onto the original landmark nodes to generate tissue-specific Scaffold
maps. (B) Bone marrow Scaffold map for C57BL/6 mice. Red nodes denote
landmark manually gated cell populations; blue nodes represent unsupervised
cell clusters from the same data. Inset: median frequencies of cell populations
defined by conventional criteria from the bone marrow of C57BL/C mice, n = 14.
(C) Scaffold map showing only the position of the landmark nodes with arrows
annotating established maturation relationships in hematopoietic development.
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Fig. 2. Mapping systemic immune organization by tissue. Scaffold maps for lymphoid organs and peripheral solid organs from C57BL/6 mice, using
bone marrow as the reference sample to define landmark nodes (red): (A) blood, (B) spleen, (C) skin-draining (inguinal) lymph node (SLN),
(D) mesenteric lymph node (MLN), (E) thymus, (F) lungs, (G) liver; n = 14 for each organ. Insets, from top to bottom: Cells comprising B cell clusters from the
spleen and SLN were visualized by 2D scatter plot. Immune cell circulation through and within the tissues was characterized by mass cytometry. Cells
comprising a deviant thymic T cell population cluster were visualized by 2D scatterplot.
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how each cellular environment shapes the im-
mune responses initiated in these locations.
Many of the cell clusters in the thymus radiated

far away from the landmarks on the map. In-
spection of these clusters indicated that many
comprised CD4+CD8+ double-positive (DP) T cells
that were absent from the bone marrow (Fig.
2E, red arrow). As the thymus largely contains
developmental T cells, this was expected. How-
ever, the increased length of the lines connect-
ing these ubiquitous DP T cell clusters to their
nearest landmarks denotes cells that deviate from
the characterized reference. We also observed
these trends when cell populations from the spleen
were used to define landmarks (fig. S5).
Immune cell subsets in peripheral solid or-

gans were compared to the reference map of the
bone marrow (Fig. 2, F and G, and fig. S6). The
region of the maps representing myeloid cells
was, in general, more densely filled (figs. S3 and
S4). For instance, cells from the lungs exhibited
many clusters distributed among the macro-
phage, cDC, and eosinophil landmarks, indicat-
ing that cells in this tissue were phenotypically
distinct from those in bone marrow and even
spleen. Alveolar macrophages in the lung ex-
pressed the proteins CD11c and Siglec-F, which
are canonically markers of cDCs and eosino-
phils, respectively (Fig. 2F) (39). Similarly, the
liver map exhibited many clusters connected to
the macrophage landmark, although the length
of the lines connecting them was longer than
those for the macrophages in the bone marrow
(P = 0.0004 by one-sided Wilcoxon rank sum
test; see Materials and Methods), consistent with
the unique characteristics of liver macrophages
(Kupffer cells) (Fig. 2G) (40). Overall, these maps
of peripheral solid organs, including the gut (fig.
S6), exhibited less fidelity than those of lymphoid
organs to the bone marrow reference, indicating
that immune cells in these sites are likely distinct
in their phenotypes and functions. Several pre-
viously uncharacterized cellular phenotypes are
listed in table S3. For future studies, cell popu-
lations present in any tissue could also be used
to define landmarks for organ-specific maps.
Moreover, a comparative analysis of immune
organization within the gut revealed site-specific
characteristics, with significantly lower frequen-
cies of CD4 and CD8 T cells and higher frequen-
cies of macrophages and cDCs in the colon than
in the small intestine (P = 2.8 × 10−15, P = 0.001,
P = 9.4 × 10−7, and P = 1.0 × 10−5, respectively,
by one-sided t test; fig. S6). This understand-
ing will inform further investigations of immune
responses and pathologies within regions of
the gut.

Genetic variation affects immune cell
composition and phenotype

We used the reference maps to reveal the im-
pact of genetic diversity on immune cell pheno-
types and organization. We generated Scaffold
maps of immune cells from two common inbred
mouse strains, 129S1/Sv and Balb/c (Fig. 3). Map-
ping cells from the bone marrow from these
animals onto the C57BL/6 reference map revealed

that the vast majority of clusters fell close the
C57BL/6 landmarks (Fig. 3, A and B). However,
certain cell clusters were distinct from those in
the C57BL/6 reference. This likely reflects ge-
netic variability, such as the relative lack of T
cells in Balb/c mice, which we confirmed by
conventional analysis of T cell populations (CD4
T cells, P = 0.0007; CD8 T cells, P = 0.001; gd T
cells, P = 2.2 × 10−7; NKT cells, P = 6.2 × 10−8 by
ANOVA).
Similarly, analysis of the maps for lymphoid

organs from these strains demonstrated high
fidelity between unsupervised clusters and land-
marks, with enrichment for mature lymphocytes.
Other cell types in these organs also reflected
the underlying genetics, such as pDC and NKT
cells, which were overrepresented in the SLN of
Balb/c mice (P = 1.2 × 10−6 and P = 7.5 × 10−8,
respectively, by ANOVA) (Fig. 3, C and D, fig. S2,
and table S2). In contrast, the SLN in C57BL/6
mice contained significantly more cDCs and
NKT cells but fewer CD4 T cells than did the
SLN from the other strains (P = 5.0 × 10−5, P =
2.9 × 10−7, and P = 5.5 × 10−10, respectively, by
ANOVA). Analysis of peripheral solid organs re-
vealed other apparent impacts of genetic variation.
In the liver, an unexpected shift in cell density
from the macrophage to the cDC landmark was
observed only in 129S1/Sv mice. Further inves-
tigation of these cells demonstrated differential
expression of CD64 and MHC II in liver macro-
phages from these inbred strains, causing these
cells to adopt a phenotype more similar to that
of cDCs (Fig. 3, E and F, red arrows). The dif-
ference in CD64 staining could be attributable
to a polymorphism in the gene expressed by
129S1/Sv mice (41). However, this difference
in MHC II expression was not observed when
comparing macrophages in other solid or-
gans, suggesting that this disparity is specific
to the liver.
These results illustrate the ability of Scaffold

maps to highlight sample-specific differences in
immune cell characteristics. These maps convey
a common global structure of immune cell pop-
ulations along with specific influences of genetic
variance.

Circadian influences on
immune organization

To investigate circadian immune fluctuations,
which can powerfully regulate immune system
behavior (42, 43), we obtained organs from C57BL/6
mice in four batches, either in the morning (8
to 9 a.m.; Zeitgeber time 1 to 2) or afternoon (1
to 2 p.m.; Zeitgeber time 6 to 7) of two consec-
utive days.
Analysis of the maps revealed a number of

cell populations that fluctuated according to the
time of day. Unexpectedly, these were signifi-
cantly more pronounced in the peripheral solid
organs than in the lymphoid tissues. The lungs
displayed clear circadian patterns with remod-
eling of the ratios for several immune cell pop-
ulations (Fig. 4A). To validate these findings, we
used fluorescence-based flow cytometry to in-
vestigate the composition of the lungs in a new

cohort of animals. In both analyses, the frequen-
cies of CD8 T cells and B cells were significantly
higher in the afternoon than in the morning
(Fig. 4B). In contrast, the frequency of macro-
phages increased in the morning, revealing a
compensatory shift in composition from mye-
loid to lymphoid cells (Fig. 4B). Scaffold maps
in which cell populations from the lungs were
used as the landmarks additionally recapitu-
lated these results (fig. S7). Further investigation
of the macrophage compartment by generating
a population-specific, force-directed map revealed
differential remodeling of alveolar and inter-
stitial macrophages in a circadian manner (fig.
S8A). Validation by conventional criteria corro-
borated that alveolar macrophages were more
prevalent in the morning, whereas interstitial
macrophages were increased in frequency in the
afternoon (fig. S8, B and C). Thus, reference map
analysis revealed a previously undetected influ-
ence of circadian rhythms on immune organi-
zation of peripheral organs that was particularly
prominent in pulmonary lymphocytes and macro-
phages. The symptom severity of patients diag-
nosed with infectious or atopic lung pathologies
(i.e., allergies, asthma, and viral pneumonias)
fluctuates in a circadian manner (44, 45). These
results provide a potential explanation for these
trends, as the lung-resident immune compart-
ment undergoes circadian reorganization. This
suggests that certain modes of antigen presen-
tation could become exacerbated during different
times of the day, or could indicate that nasally
applied vaccines or therapeutics might have dif-
fering influences on immune function depending
on the time of application.

Integrating human data into the
reference map

Because immune cell types are well conserved
between mice and humans, we analyzed human
data overlaid onto the murine reference map
(46). Mass cytometry data from whole periph-
eral blood from four healthy human donors was
passed through the Scaffold map algorithm. We
calculated distance between clusters on the basis
of 15 cell surface markers that have similar cell
subset expression patterns between humans and
mice (Fig. 5, A to C). Differences between the
species were apparent, such as the increased fre-
quency of neutrophils and relative scarcity of B
cells in human peripheral blood (47). However,
the similar overlay pattern confirmed a common
global structure of immunity. We also generated
a map of murine blood using only the same 15
proteins to measure distance from the estab-
lished landmarks (Fig. 5C). This similarity is not
surprising. Gene expression networks in species
as widely separated as humans and mice have
strong similarities—even to the point of enabling
drug screening based on gene network similarities
(48). The human data were not normalized or
differentially transformed in any manner, under-
scoring the robustness of the mapping approach.
Efforts to generate a human-centric reference
map may enable more detailed mapping of hu-
man immune organization, but these results

SCIENCE sciencemag.org 10 JULY 2015 • VOL 349 ISSUE 6244 1259425-5

RESEARCH | RESEARCH ARTICLE



1259425-6 10 JULY 2015 • VOL 349 ISSUE 6244 sciencemag.org SCIENCE

Fig. 3. Immune organization across inbred mouse strains. Scaffold maps for several tissues from 129S1/Sv and Balb/c mice, using C57BL/6 bone
marrow as the reference sample to define landmark nodes (red): (A) bone marrow from 129S1/Sv mice, (B) bone marrow from Balb/c mice, (C) SLN
from 129S1/Sv mice, (D) SLN from Balb/c mice, (E) liver from 129S1/Sv mice, (F) liver from Balb/c mice (n = 3 for each panel). Histograms of CD64 and
MHC II expression on liver macrophages from representative mice of each strain.
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demonstrate the feasibility of comparing cellu-
lar features across the species barrier.

Mapping archival data

The ability to map data from independent ex-
periments would increase the utility of a refer-
ence map, creating a dynamic resource in which
knowledge could accrue over time. Therefore,
we mapped archival fluorescence-based flow cy-
tometry data onto the reference map (Fig. 5, D
to F). We used a previously published data set
of bone marrow cells from C57BL/6 mice ob-
tained with eight-color flow cytometry includ-
ing lineage-specific markers [B220 for B cells,
CD11b for myeloid cells, T cell receptor b chain
(TCRb) for T cells, CD4, and CD8 to distinguish
the major types of mature T cells] as well as stem
cell/progenitor markers [stem cell growth fac-
tor receptor (c-Kit), stem cell antigen 1 (Sca-1),
and CD150] (17). We used only the information
contained in these eight dimensions to calculate
similarity (Fig. 5E). As a point of reference, we

also generated a Scaffold map from the orig-
inal mass cytometry data of the C57BL/6 bone
marrow using these same eight dimensions
(Fig. 5F).
Cells from the fluorescence data occupied the

major regions of the Scaffold map with frequen-
cies similar to those in the original reference.
Moreover, the maps generated from both flu-
orescence and mass cytometry data using the
same eight dimensions exhibited strong sim-
ilarity, suggesting that the underlying structure
of the system remained the primary driver of
the layout organization. Cell populations for
which no unique markers exist and for which
complex combinations of markers define cell
types (such as the different myeloid cell subsets)
exhibited lower resolution on the map, and as
such, they are grouped in the center of several
landmark nodes. Thus, although the specific
selection of measured features affects the ability
to discriminate between similar cell populations,
even a few key parameters can drive cell clusters

toward cognate known reference cell subsets
within the map.

A cross-sectional view of
cellular compartments

It would be useful to reveal in detail the local
structure of cell subsets that lack preexisting
landmarks, so as to enable characterization of
similarities and deviations. Having identified
distinctions within given cell subsets across ana-
tomical locations, we used unsupervised force-
directed graphs (lacking landmark populations)
to organize cells of a given cell type (T cells or
dendritic cells, for instance) defined by tradi-
tional criteria such that differences between them
would become apparent (Fig. 6). Each major cell
population from every tissue was clustered and
mapped together into force-directed graphs, re-
sulting in a phenotypic landscape for that given
cell type. As noted, manually defined landmarks
were omitted, although they could be defined in
subsequent analyses as desired by the user. Cell
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Fig. 4. Mapping circadian
changes in the lungs. (A)
Scaffold maps of lungs of repre-
sentative animals collected in
the morning (8 to 9 a.m.) and
afternoon (1 to 2 p.m.). (B)
Population frequencies in the
lungs between morning and
afternoon, as defined by tradi-
tional criteria from both the
original mass cytometry data set
(n = 7 morning and afternoon)
and a follow-up fluorescence
experiment (n = 7 morning, n = 8
afternoon). Bars represent
means ± SEM; P values result
from one-sided t test.
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clusters were colored according to their tissue
of origin to reveal how each tissue is repre-
sented within the global similarity map for
each cell type. Scaling each cluster proportion-
ally to the percentage of total leukocytes rep-
resented the relative frequency of cells in each
cluster.

We began by examining the landscape of T
cells across the body, as T cells are well known
to exhibit organ-specific properties. The map-
ping shows that a large group of cell clusters
was exclusively located in the thymus and ex-
pressed both CD4 and CD8, characteristic of de-
velopmental double-positive (DP) T cells (Fig. 6A,

fig. S9, and table S4). The T cell map then showed
two predominant branches characterized by
CD4 (left) or CD8 expression (right), which were
bridged by smaller clusters lacking high ex-
pression of either. Some of these cell clusters
expressed the gd TCR (Fig. 6A, inset). Others
expressing TCRb were localized to the gut and
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Fig. 5. Mapping human and archival data onto the reference map. (A)
Original mass cytometry whole-blood Scaffold map from C57BL/6 mice, n = 14.
(B) Scaffold map of human whole blood interrogated by 15-parameter mass
cytometry with distance measured using only those 15 dimensions for layout
of unsupervised clusters onto the reference. Human parameters were assigned
to murine correlate markers with similar cellular distribution, including canonical
surface markers used for identification of cell populations by conventional crit-
eria as well as several orthologous proteins, n = 4. (C) Scaffold map of original
murine blood mass cytometry data with distance measured using only the

same 15 dimensions for layout of unsupervised clusters onto the reference.
(D) Original mass cytometry bone marrow Scaffold map from C57BL/6 mice.
(E) Scaffold map of C57BL/6 bone marrow interrogated by eight-color
fluorescence-based flow cytometry from a previously published data set (17)
with distance measured using only those eight dimensions (B220, CD11b,
TCRb, CD4, CD8, c-Kit, Sca-1, CD150) for layout of unsupervised clusters onto
the reference. (F) Scaffold map of original mass cytometry data with distance
measured using only the same eight dimensions for layout of unsupervised
clusters onto the reference.
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lungs, likely representing recently described
mucosa-associated invariant T (MAIT) cells
(fig. S9 and table S4) (49). Among the CD4+ and
CD8+ T cells expressing the ab TCR, further
divisions were driven by CCR7, CD27, and CD44,
which are common markers that distinguish dif-
ferentiation states (fig. S9 and table S4) (50). The

tissue distribution of these subsets appeared
skewed, with enrichment of effector and mem-
ory T cells in the peripheral solid organs. A
group of CD4+ ab T cell clusters expressed CD25
and forkhead box P3 (Foxp3), characteristic of
regulatory T cells, and were overrepresented in
the gut (fig. S9 and table S4).

Whereas T cells demonstrate a largely bifur-
cated set of phenotypes with “bridging” cell sub-
sets, the B cell landscape was markedly different,
exhibiting a continuum of phenotypes in tissues
distributed across the body (Fig. 6B). Although
B cells in the bone marrow exhibited a wide
range of phenotypes reflecting developmental
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Fig. 6. Defining the landscape of immune cell populations. Population-
specific landscapes were generated as follows: Cell populations were manually
gated, subjected to unsupervised clustering, and laid out in an unsupervised
force-directed graph. Clusters are colored according to tissue of origin and sized
by the number of cells in each cluster as a percentage of the total number of
leukocytes in the tissue of origin. Each plot is scaled independently. (A) Tcell

landscape including CD3+ cells. Cells comprising Tcell clusters from the colon
and small intestine falling within the red box are visualized by 2D scatterplot,
n = 14. (B) B cell landscape including B220+ and CD138+ cells, n = 14. (C) NKTcell
landscape including CD49b+ cells, n = 14. (D) cDC landscape including CD11chi

MHC IIhi cells, n = 14. (E) Macrophage cell landscape including CD64+ F4/80+

cells, n = 14. Lineage markers are defined in Materials and Methods.
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stages, those in the secondary lymphoid organs
expressed higher amounts of B220 and CD19 (a
cell surface co-receptor expressed by most ma-
ture B cells) with variable expression of the B
cell receptor isotypes IgM, IgD, and CD23 [the
low-affinity immunoglobulin E (IgE) receptor]
(fig. S10 and table S4). The majority in periph-
eral solid organs exhibited reduced amounts
of IgD and CD23 with increased MHC II (fig.
S10 and table S4) (51). Many thymic B cells ex-
hibited a unique phenotype, characterized by the
extracellular matrix receptor CD44 and Sca-1,
and mapped near the plasma cells, which express
CD138 (fig. S10 and table S4). Thus, the B cell
landscape was characterized by a phenotypic
continuum with enrichment of specific pheno-
types according to tissue of residence.
The NKT cell landscape was predominantly

organized by expression of CD11b and CD27,
which delineate NKT cell maturation stages
(Fig. 6C, fig. S11, and table S4) (52). A discrete
population of NKT cells expressing higher levels
of developmental markers CD34 and cKit (CD117)
was found in the bone marrow (fig. S11 and table
S4). In the peripheral solid organs, large pop-
ulations of NKT cells were present in the liver
and lung with fewer in the gut. A group of NKT
cells with broad tissue distribution expressed
Ly6C, which has been associated with NKT cell
memory (fig. S11 and table S4) (53). These results
recapitulate the known landscape of lymphoid
cell biology and provide new insights regarding
immune organization across the body according
to the tissues in which the immune cells reside
(table S4).
Definitive statements regarding myeloid pheno-

types and their functions remain a matter of
interest (54, 55) and occasional contention (56).
For instance, examining the cDC landscape re-
vealed several subgroups, some of which expressed
CD4 or CD8; their expression was mutually ex-
clusive, and these cell types were overrepresented
in the secondary lymphoid organs (Fig. 6D). Sev-
eral of the thymic cDC clusters expressed CD8, a
feature characteristic of cross-presenting DCs,
which may reflect their need to present intra-
cellular antigens in the context of both MHC I
and II to promote T cell tolerance (fig. S12 and
table S4) (57). Many cDCs in peripheral solid or-
gans and the bone marrow were CD11b+ and ex-
pressed higher levels of Fcg receptors (CD16/CD32),
which suggests that they may be more sensitive
to antibody-mediated activation (fig. S12 and
table S4).
The macrophage landscape exhibited distinct

segregation by location, consistent with their
tissue-specific homeostatic functions and self-
renewal (Fig. 6E) (15). Relative to macrophages
present in the SLN and MLN, which exhibited
high expression of the CD11b integrin and MHC
II, red-pulp macrophages in the spleen expressed
significantly less CD11b (fig. S13 and table S4).
The macrophages in the gut exhibited the highest
expression of MHC II and Fcg receptors (CD16/
CD32), which might reflect a greater capacity to
present antigen to CD4 T cells or sensitivity to
activation via antibodies (fig. S13 and table S4).

Macrophages in the liver (Kupffer cells) ex-
pressed the highest levels of F4/80 and CD64,
whereas alveolar macrophages in the lung segre-
gated far away, as judged by their high expres-
sion of the CD11c integrin, the Siglec-F lectin, and
CD44 (fig. S13 and table S4).
Thus, the force-directed graphical landscapes

enabled rapid identification of the features that
distinguish each population across the samples
of interest, providing a model for characterizing
the predominant differences among multiple
conditions.

Conclusions

We exploited the increased parameterization af-
forded by mass cytometry to generate a consol-
idated, extensible reference map of the murine
immune system with single-cell resolution. By
assessing the composition and characteristics of
immune populations throughout the body, this
provides the basis for a systematic model of im-
mune organization. Such an objective necessitated
new analytical methods for comparing groups
of complex cellular samples. Our visualization al-
gorithm combines unsupervised clustering with
cellular landmarks defined by prior knowledge.
The resulting Scaffold maps enabled global char-
acterization of the steady-state immune structure
from different anatomical locations, genetic back-
grounds, circadian time points, and species bar-
riers. When compared to an unsupervised graph
across the organismal immune system (fig. S14),
the advantages of such a framework become ap-
parent. The incorporation of landmarks assists in
the interpretation of the graphical organization.
They also provide the reference points for com-
paring data, enabling the unique features of new,
uncharacterized samples to stand out by com-
parison to a characterized baseline sample. A
reference map of this nature will be useful in
additional iterations when merged with immu-
nological perturbations such as infection, autoim-
mune disease, or cancer to identify how altered
immune states deviate from the steady state.
Beyond providing an analytical framework to

understand immune organization from the uni-
fied data set generated here, the approaches we
describe can serve as a data repository for col-
lating experimental data from the research com-
munity (fig. S15). This would provide several
distinct benefits. First, users could mine the data
included in these studies to investigate the char-
acteristics and distribution of cell types of interest
in a dynamic way. Second, user modification of
defined parameters (such as the definition of land-
mark populations) could provide analyses of im-
mune structure not biased by prior strictures.
Perhaps more urgent to the community at

large, mapping of newly created data sets onto a
reference structure will assist in global compar-
isons of archival animal experiments with clin-
ical human data. Investigators can merge newly
mapped data to compare cellular features across
previously mapped features in the reference land-
scape. With the implementation of standard re-
gression analysis, the presence or absence of given
clinical outcomes due to certain immune config-

urations might be discerned—much as has been
the case with accessible archival gene expres-
sion data sets (9). In one analysis, the expression
of a newly discovered regulatory molecule from
ongoing forward genetics efforts (58, 59) could be
defined in all immune cell types during health
and disease. This could be achieved by measur-
ing such a molecular feature by mass cytometry
in addition to the proteins included here and
mapping the resulting data. Alternatively, changes
in metabolism or cell death programs within the
global immune system during chronic inflam-
mation or aging would be revealed, providing
knowledge to inform the design of precise ther-
apeutic strategies. Moreover, as the number of
measurable parameters on a single-cell basis in-
creases, the framework could easily be updated
to reflect more detailed data sets.
Scaffold maps demonstrate the capacity to

align data from distinct analysis platforms, in-
cluding fluorescence-based flow cytometry, or
across species of interest, such as the demonstra-
tion of mapping human immune data onto a
murine framework. As the throughput of other
single-cell analysis modalities, such as single-cell
RNA sequencing (60, 61), continues to develop,
these data could also be incorporated into the
map along with other metadata types such as
publication records, clinical phenotypes, and other
relevant assays analogous to other strategies for
data integration (62, 63). Therefore, this core in-
frastructure forms the basis for a centralized
repository in which single-cell data can accrue
over time, providing a unified reference map for
understanding the organization and behavior of
complex cellular systems. Efforts that character-
ize cellular behavior in this open-source approach
will continue to improve upon the initiating ref-
erence presented here to reveal the inherent
structure in biological networks of immunity for
clinical benefit.
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